Density

class probpy.density.nonparametric_convolution.UCKD(variance: float = 2.0, **_)[source]

Un-normalised Convolution Kernel Density

__init__(variance: float = 2.0, **_)[source]
Parameters:
  • variance – variance of kernel
  • _
fit(particles: numpy.ndarray)[source]
Parameters:particles – particles to use for estimate
Returns:
p(particles: numpy.ndarray)[source]
Parameters:particles – densities to estimtae
Returns:densities
class probpy.density.nonparametric_convolution.RCKD(variance: float = 2.0, sampling_sz: int = 100, error: float = 0.1, verbose: bool = False)[source]

Renormalized Convolution Kernel Density

__init__(variance: float = 2.0, sampling_sz: int = 100, error: float = 0.1, verbose: bool = False)[source]
Parameters:
  • variance – variance of kernel
  • sampling_sz – sampling size in normalization integral
  • error – error metric for normalization constant
  • verbose – print progress of estimating normalization constant
fit(particles: numpy.ndarray)[source]
Parameters:particles – particles to use for estimate
Returns:
p(particles: numpy.ndarray)[source]
Parameters:particles – estimate density of particles
Returns:densities
class probpy.density.radial_basis.URBK(variance: float = 1.0, **_)[source]
__init__(variance: float = 1.0, **_)[source]
Parameters:
  • variance – variance in rbf kernel
  • _
epsilon = 0.01

Un-normalised Radial-Basis Kernel

fit(particles: numpy.ndarray, densities: numpy.ndarray)[source]
Parameters:
  • particles – particles to estimate density
  • densities – unnormalized density of particles
Returns:

p(particles: numpy.ndarray)[source]
Parameters:particles – particles to estimate
Returns:densities